2012 Drinking Water Consumer Confidence Report Issued: June 13, 2013 We test the drinking water quality for many constituents as required by State and Federal Regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2012 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. ### **SOURCES OF WATER** The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Mariani Packing Company, Inc. water system is located in Solano County and serves the Mariani dried fruit processing operation. There is one service connection serving a population of approximately 350 people. Mariani's water supply consists of two groundwater wells i.e. WELLS # 5 and # 6, both located in the Mariani's facility in Vacaville. # **CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:** - *Microbial contaminants*, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - *Pesticides and herbicides,* which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health. # **DRINKING WATER SOURCE ASSESSMENT AND VULNERABILITY SUMMARIES** The drinking water source assessment is an evaluation of the source water to determine the possible contaminating activities (PCAs) to which the source is most vulnerable. The wells are considered most vulnerable to fleet/truck/bus terminals, sewer collection system and automobile gas stations. The completed Drinking Water Source Assessment and Vulnerability Summaries were conducted by California Department of Public Health (CDPH) on November, 2001. Copies of the completed assessments can be requested and obtained by contacting Stefan Cajina, North Coastal Regional Engineer @ (510) 620-3475 of California Department of Public Health – Drinking Water Field Operations Branch, 850 Marina Way Parkway, Bldg. P, 2nd Floor, Richmond, CA 94804. Additionally, you may view a copy at the Quality Assurance Lab of Mariani Packing Company, Inc by contacting Hanna McLennan @ (707) 452-2901. # TIME AND PLACE OF REGULARLY SCHEDULED BOARD MEETINGS FOR PUBLIC PARTICIPATION Although Mariani Packing Company does not hold public meetings on its distribution system, we are available to address any questions you may have. Please contact Hanna McLennan at (707) 452-2901. ### **FOR MORE INFORMATION REGARDING THIS REPORT** Contact Hanna McLennan at (707) 452-2901. **Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent**. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. | TABLE 1 - | SAMPLING | RESULTS SH | OWING THE | DETECT | ION OF C | OLIFORM BACTERIA | |---|---------------------------------|---|------------------------------|--------|---------------|--| | Microbiological
Contaminants
(complete if bacteria
detected) | Highest
No. of
detections | No. of
months
in
violation | MCL | | MCLG | Typical Source of Bacteria | | TABLE 2 | - SAMPLING | RESULTS S | HOWING THE | DETEC | TION OF | LEAD AND COPPER | | Lead and Copper (complete if lead or copper detected in the last sample set) | No. of samples collected | 90 th
percentile
level
detected | No. sites
exceeding
AL | AL | PHG | Typical Source of
Contaminant | | Lead (ppb) | 5 | ND | 0 | 15 | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits. | | Copper (ppm) | 5 | 0.16 | 0 | 1.3 | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. | | | TABLE 3 - | SAMPLING I | RESULTS FOR | SODIU | M AND HA | RDNESS | | Chemical or
Constituent (and
reporting units) | Sample
Date | AVG
Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of
Contaminant | | Sodium (ppm) | 6/22/04 | 31.5 | 28-35 | none | none | Salt present in the water and in generally naturally occurring. | | Hardness (ppm) | 6/22/04 | 165.0 | 160-170 | none | none | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring. | ^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report. | TABLE 4 - DET | ECTION OF | CONTAMIN | ANTS WITH A | PRIMARY | DRINKING V | VATER STANDARD | |---|---------------------------|--------------------------|------------------------|---------------|--------------------------|--| | Chemical or
Constituent
(and reporting units) | Sample
Date | AVG
Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of
Contaminant | | Arsenic (ppb) | 6/03/10 | 2.9 | 2.5 - 3.3 | 10 | 0.004 | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes. | | Barium (ppm) | 6/03/10 | 0.17 | 0.14 - 0.20 | 1 | 2 | Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits. | | Chromium (ppb) | 6/03/10 | 8.5 | ND - 17.0 | 50 | (100) | Discharge from steel and pulp mills and chrome plating; erosion of natural deposits. | | Fluoride (ppm) | 6/03/10 | 0.285 | 0.28 - 0.29 | 2.0 | 1 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories. | | Nitrate (as nitrate,
NO3) (ppm) | 10/10/12
&
10/24/12 | 4.2 | 4.0 - 4.4 | 45 | 45 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits. | | TABLE 5 - DETE | CTION OF C | CONTAMINA | NTS WITH A S | ECONDARY | DRINKING | WATER STANDARD | | Chemical or Constituent (and reporting units) | Sample
Date | AVG
Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of
Contaminant | | Color (Units) | 6/22/04 | 5.0 | 4.0 - 6.0 | 15 | none | Naturally-occurring organic materials. | | Turbidity (Units) | 6/22/04 | 0.4 | 0.13 - 0.65 | 5 | none | Soil runoff. | | Total Dissolved Solids (TDS) (ppm) | 6/22/04 | 315 | 310 - 320 | 1000 | none | Runoff/leaching from natural deposits. | | Specific Conductance
(µS/cm) | 6/22/04 | 415 | 410 - 420 | 1600 | none | Substances that form ions when in water; seawater influence. | | Chloride (ppm) | 6/22/04
2/22/05 | 7.8 | 7.0 - 8.6 | 500 | none | Runoff/leaching from natural deposits; seawater influence. | | Sulfate (ppm) | 6/22/04 | 10.0 | 9.9 - 10.0 | 500 | none | Runoff/leaching from natural deposits; industrial wastes. | ^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. | TABLE 6 - DETECTION OF UNREGULATED CONTAMINANTS | | | | | | | | |---|------------------|---|-----------------------|-------------------------|--|--|--| | Chemical or
Constituent
(and reporting units) | Constituent Date | | Notification
Level | Health Effects Language | | | | | Chromium VI
(Hexavalent
Chromium) (ppb) | 8/22/01 | 6 | N/A | N/A | | | | ^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. #### **TERMS USED IN THIS REPORT:** **Maximum Contaminant Level (MCL)**: The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. **Maximum Contaminant Level Goal (MCLG)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). **Public Health Goal (PHG)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. **Maximum Residual Disinfectant Level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS)**: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. **Secondary Drinking Water Standards (SDWS):** MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT)**: A required process intended to reduce the level of a contaminant in drinking water. **Regulatory Action Level (AL)**: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. **Variances and Exemptions**: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions. ND: not detectable at testing limit **ppm**: parts per million or milligrams per liter (mg/L) **ppb**: parts per billion or micrograms per liter (ug/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) **pCi/L**: picocuries per liter (a measure of radiation) # Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (1-800-426-4791) Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).